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Abstract. Step meandering due to a deterministic morphological instability on vicinal surfaces during
growth is studied. We investigate nonlinear dynamics of a step model with asymmetric step kinetics, terrace
and line diffusion, by means of a multiscale analysis. We give the detailed derivation of the highly nonlinear
evolution equation on which a brief account has been given [6]. Decomposing the model into driving and
relaxational contributions, we give a profound explanation to the origin of the unusual divergent scaling of
step meander ζ ∼ 1/F 1/2 (where F is the incoming atom flux). A careful numerical analysis indicates that
a cellular structure arises where plateaus form, as opposed to spike-like structures reported erroneously in
reference [6]. As a robust feature, the amplitude of these cells scales as t1/2, regardless of the strength of the
Ehrlich-Schwoebel effect, or the presence of line diffusion. A simple ansatz allows to describe analytically
the asymptotic regime quantitatively. We show also how sub-dominant terms from multiscale analysis
account for the loss of up-down symmetry of the cellular structure.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 68.35.Fx Diffusion; interface forma-
tion – 81.15.Aa Theory and models of film growth

1 Introduction

The production of solids by Molecular Beam Epitaxy
(MBE) having a surface which is abrupt on the atomic
scale is often hampered either by a stochastic roughness
or due to the presence of morphological instabilities. The
stochastic roughness is often attributed to shot noise from
the incoming deposition flux. As for deterministic instabil-
ities, there are three general types of surface instabilities
leading to kinetic roughness: step-bunching, step mean-
dering, and islanding (see Fig. 1). The two first categories
are met on vicinal surfaces, while the last one can either be
present on high symmetry surfaces, a typical mechanism
being the Ehrlich-Schwoebel effect [1], or even on a vicinal
surface as a secondary instability of the step meander [2].

Kinetic roughening has long been as a mystery. With
regard to MBE growth on a high symmetry surface,
a prominent example is the Kardar-Parisi-Zhang [3]
equation introduced in an attempt to describe surface
noise-induced-roughening, its one-dimensional version is:

∂ty = aΩF + ∂xxy + (∂xy)2 + η, (1)

where y is the surface height, and x the coordinate along
the surface (cf. Fig. 1). Derivatives are subscripted, that
is ∂ty = ∂y/∂t and so on. F is the incoming flux, a is the
atomic height and Ω is the atomic area. We have set the
coefficients to unity, since only the form of the equation
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Fig. 1. Schematic view of a crystal surface suffering various
instabilities. Step-bunching, step-meandering, and island (or
advacancy) formation are depicted.

matters in this discussion. This equation has given rise to a
variety of investigations both analytically and numerically
(this part has included analytical treatment of the partial
differential equation together with numerical Monte-Carlo
simulations which mimic KPZ dynamics). Equation (1) is
phenomenological in the sense that it is derived on the
basis of symmetries.

The KPZ nonlinearity is a natural candidate in the
long wavelength limit, if desorption is present, or if al-
lowance is made for defects (such as vacancies – often
named overhangs – in the growing solid). No derivation
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of that equation has been given so far, however. The rea-
son is, in our opinion, the lack of a continuum description
of island nucleation. In the absence of both defects and
desorption (which are two usual requirements for produc-
tion of solids of interest!), the nonlinear KPZ term is not
permissible [1]. In that case the equation must have a form
of a conservation law, that is:

∂ty = aΩF −∇ · J, (2)

so that upon averaging, the mean velocity is simply given
by aΩF , as it should be; because the KPZ nonlinearity
can not be written as a flux (i.e. as a divergence of a
current) it introduces an additional contribution to the
growth velocity 〈(∂xy)2〉 6= 0 (the symbol 〈..〉 stands for to
the average), which obviously makes no sense. There has
thus been a variety of attempts with the aim of deriving
the appropriate surface evolution equation in that limit.
Here again no derivation from first principles is available.

As said above, in addition to surface roughness caused
by shot noise, nominal high symmetry as well well as vic-
inal surfaces, may become inherently unstable [1] when
brought away from equilibrium. Nominal surfaces may de-
velop mounds due to the ES effect. However, a derivation
of the appropriate surface evolution equation in that case
is still a matter of debate, though a significant progress
has been achieved.

In contrast to nominal surfaces, vicinal surfaces in the
step flow regime have allowed to derive evolution equa-
tions from first principles. In a series of papers, we have
shown [4–6] that vicinal surfaces offer a relatively tractable
situation, though often nontrivial, where evolution equa-
tions can be extracted from basic transport and kinetic
laws. The strategy is to first focus on derivation of step
evolution equations. Once this task is achieved, it becomes
then possible to derive the surface evolution equation. In
its general form, the evolution equation is nonlocal and
highly nonlinear. A rather simple information is extracted,
however, if we focus on the long-wavelength limit: that is
we assume that the wavelength of the step meander, and
thus surface modulation, is large in comparison to the
natural physical length (diffusion length if desorption is
important, otherwise the interstep distance, which is the
most frequent situation). More precisely the full growth
equations, which are highly nonlinear and nonlocal, can be
reduced to nonlinear partial differential equations, which
are more tractable and often allow a significant analytical
progress as will be shown here.

As shown by Bales and Zangwill [7], a straight step
during MBE growth may become morphologically unsta-
ble in the presence of an attachment asymmetry (the
Ehrlich-Schwoebel (ES) effect) at the step. Close to the
instability threshold, starting from the Burton-Cabrera-
Frank (BCF) [8] model, we have shown [4] that the step
profile in the presence of desorption obeys the Kuramoto-
Sivashinsky equation (written in a canonical form):

∂tζ = −∂xxζ − ∂xxxxζ + (∂xζ)
2 , (3)

where x is the coordinate along the step (Fig. 1), and ζ
designates the step position. In a similar fashion we have

shown later that steps on a vicinal surface obey a set of
coupled anisotropic Kuramoto-Sivashinsky equations [5].
The ultimate stage of surface dynamics is found to be
spatiotemporal chaos. Two remarks are in order: (i) the
KPZ nonlinearity is of the KS type – due to desorption
– (ii) the first term in the KS equation has a negative
sign, signaling an instability; there is a necessity for taking
higher order derivatives into account in order to prevent
arbitrary short wavelength modes to develop.

A question of major importance arose recently [6]: if
desorption is negligible, what kind of nonlinearity should
one expect? because of the conserved character of dynam-
ics, only terms which can be written as derivatives of a
current are allowed. We could naively have thought that
a natural candidate would be the conserved KS equation,
namely ∂tζ = −∂xxζ − ∂xxxxζ + ∂xx[(∂xζ)

2]. A close in-
spection of the BCF equations, as shown here in details,
reveals that this is not the case, though symmetry and
conservation would dictate that form as the first plausi-
ble candidate. We have recently shown [6] that, for an
in-phase train of steps, each step position obeys the fol-
lowing nontrivial evolution equation:

∂tζ=−∂x
[

1
1+(∂xζ)2

(
∂xζ+∂x

(
∂xxζ

(1+(∂xζ)2)3/2

))]
. (4)

This highly nonlinear equation could not be inferred from
scaling and symmetry arguments. It is related to a singular
behavior of the amplitude of the meander that behaves as
1/F 1/2 when F is small. Instead of chaos, a regular pattern
is revealed, the modulation wavelength is fixed at the very
initial stages while the amplitude of the step deformation
follows a scaling law w ∼ t1/2.

The objective of this paper is many fold. We first give
an extensive derivation of the above evolution equation
starting from the BCF model. We shall also present a
general argument on why that singular behavior is present
in the absence of desorption. A second line of the inves-
tigation concerns higher order contributions. It is clear
that the above equation enjoys the up-down symmetry,
ζ → −ζ. We show here that the effect of higher order con-
tributions is to destroy this up-down symmetry. An im-
portant fact to be presented here is that the step profile
exhibits a plateau-like morphology. This contradicts the
preliminary simulation given in reference [6]. That sim-
ulation had suffered from numerical inaccuracy causing
spurious spikes to develop. Finally we show that though
the full equation is highly nonlinear it has been possible
to provide a quantitative analytical treatment for the step
morphology, and evaluate the plateau width along with
the meander amplitude. The results are found to be in
good agreement with numerical results.

This paper is organized as follow. We write down the
basic equations in Section 2. In Section 3 a linear sta-
bility analysis is performed, which allows to evaluate the
most unstable wavelength and the typical time for the ap-
pearance of the instability. In Section 4 we shall provide
a general argument on the extraction of the scaling of the
step position with the incoming flux. Section 5 presents
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the detailed derivation of the principal evolution equa-
tion (4) in the one-sided limit. We shall then present the
situation where there is a finite ES barrier. Section 6 deals
with the higher order terms and their impact on the up-
down symmetry. In Section 7 we generalize the derivation
of the step evolution equations to the two-sided case. Dis-
cussion and outlook are presented in Section 8.

2 Basic equations

We present the model based on that of BCF, sup-
plemented with asymmetric attachment kinetics as in-
troduced by Schwoebel [9], and line diffusion following
reference [10]. A vicinal surface, whose mean interstep
distance is `, is considered. On the terraces, the adatom
concentration cm between steps m and m+ 1 evolves ac-
cording to:

∂tcm = D∇2cm + F, (5)

where D is the adatom diffusion constant, F is an in-
coming flux of adatoms from a beam, and ∂t denotes the
time derivative. Once an atom is attached to the sur-
face, it cannot detach from it (no desorption). We con-
sider the widely used quasistatic limit where the concen-
tration reaches a steady state regime on time scales much
faster than that of step motion. We then have to solve
equation (5) with the l.h.s. equal to zero. For implications
due to non-quasisteady effects see reference [11].

The excursion of the mth step about its straight
configuration is denoted ζm(x, t), so that its position is
m` + ζm(x, t) + V t, where V is the mean step velocity.
We consider the case where no step overhang is present,
so that the function ζ(x) is univocal. On both sides (+
and − designate the lower terrace and the upper one re-
spectively) of step m, the normal diffusion flux is linearly
related to departure from equilibrium with kinetic coeffi-
cients ν±:

D∂ncm|+ = ν+(cm − ceq)|+
D∂ncm−1|− = −ν−(cm−1 − ceq)|−, (6)

where ceq is the local equilibrium concentration, and
∂n denotes the derivative in the direction which is nor-
mal to the step. More precisely ∂n ≡ n · ∇ where
n = (−ζx, 1)/

√
1 + ζ2

x is the unit vector normal to the
step, and ∇ is the two-dimensional gradient operator:
∇ = (∂x, ∂z) where x is the coordinate along an origi-
nally straight step, and z the one orthogonal to it. The
attachment lengths on both sides of the steps will be used
later: d+ = D/ν+ and d− = D/ν−. If c0eq is the adatom
concentration close to a straight step, the concentration
for a curved step is given by [4]:

ceq = c0eq(1 + Γκm), (7)

where Γ = Ωγ̃/kBT (the definition of Γ is slightly differ-
ent from that of Ref. [12]) with γ̃ the step stiffness, and

κm, the step curvature is given by:

κm = − ∂xxζm
[1 + (∂xζm)2]3/2

· (8)

Here for simplicity we disregard step-step elastic interac-
tion. We shall come back to this point in the discussion.

At the steps, mass conservation, in the limit where the
adatom concentration is much smaller than that of the
solid 1/Ω, imposes:

Vn = Ω (D∂ncm|+ −D∂ncm−1|−) +a∂s[DL∂s(Γκm)],
(9)

where a is an atomic distance. Using Einstein’s relation,
the macroscopic diffusion constant along steps is defined
as DL = Dstacst, where Dst and cst are the diffusion con-
stant and the concentration of mobile atoms along the
step, respectively. This expression is in agreement with
that of Mullins [13]. One may object that cst is in fact
not well defined along a step. We shall therefore use a
more general expression derived from the Kubo formula
[14–16]: DL = a2/τL where τL is the characteristic time
for detachment of an atom from a kink. Non-equilibrium
effects related to line diffusion are not considered in this
expression.

Two sources of nonlinearities can be identified. The
first one is apparent in the boundary conditions (7, 9)
because both the normal to the step and the curvature
(see Eq. (8)) are nonlinear functions of the step profile.
The second one originates from the free boundary char-
acter (Stefan problem) and is a hidden source of nonlin-
earity: the concentration field on a terrace – which is a
nonlinear function of the position – depends on the step
profile, leading thus to a nonlinear concentration field as
a function of the step position.

In addition to elastic interactions (not included here),
steps are coupled via adatom diffusion. Dynamics are non-
local in space and time. With the help of an integral for-
mulation of the model equations, we have made explicit
this nonlocality in a previous work [2]. The use of the qua-
sistatic approximation suppresses delay effects, whereas
spatial nonlocality persists.

3 Linear stability analysis

The linear stability analysis is the first step in any sta-
bility problem. Moreover it will allow us to prepare some
preliminaries for the nonlinear analysis. Let us define the
Fourier transform of the meander as:

ζωkφ=
∞∑

m=−∞

∫ +∞

−∞

∫ +∞

−∞
ζm(x, t) e−iωt−ikx−iφm dx dt,

(10)

where iω is the pulsation of the perturbation of wavevec-
tor k and phase shift between two neighboring steps,
φ. The phase varies between 0 and 2π. Let us quote
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two special cases. The in-phase mode φ = 0, corre-
sponds to the case where all step meanders are identical,
i.e. ζm(x, t) = ζm′(x, t) for any m, m′. The out of phase
mode φ = π corresponds to the situation ζm(x, t) =
−ζm+1(x, t).

The derivation of the full dispersion relation can be
performed in this case along the same lines as in refer-
ence [17]. We shall not repeat here the calculation, but
give directly the result. The quantity iω is complex, and
let us discuss separately the real and imaginary parts. The
real part of iω takes the form

<e(iω) = ΩF
q

D

(
d− − d+

`+ d− + d+

)[
(d− + d+)

(
q` sinh(q`)

− cosh(q`) + cos(φ)
)

+
`

2
q` sinh(q`)

]
− Γq2

[
DS

q

D
(

2 (cosh(q`)− cos(φ))

+ q(d+ + d−) sinh(q`)
)

+ aDLq
2

]
,

(11)

with q = |k|, and

D = (d+ + d−)q cosh(q`) + (d+d−q
2 + 1) sinh(q`). (12)

Both macroscopic diffusion constants (adatom tracer dif-
fusion constant D times coverage of mobile atoms) on the
terraces DS = DΩc0eq and DL along the steps enter this
relation. The “bare” (tracer) diffusion constant of adatoms
on terraces does not appear alone.

A positive <e(iω) is a signature of an instability. The
straight step is unstable during growth provided that a
normal ES effect is present (d− > d+). Moreover, the most
unstable mode is the in-phase mode φ = 0. This remark
will be exploited later.

The imaginary part of iω describes propagative effects:

=m(iω) = ΩF sin(φ)
q

D (`+ d+ + d−). (13)

The origin of this term is quite transparent. In the
limit of a straight step (q = 0), we have =m(iω) =
ΩF sin(φ), so that the perturbed solution takes the form
(ignoring the real part of iω), ζm ∼ eimφ+itΩF sin(φ) =
eiφ[m+t(V0/`) sin(φ)/φ]. Here we have introduced the step ve-
locity of the uniform train, V0 = ΩF`. This means that in
order to travel a distance m`, it takes for a perturbation
a time given by (m`/V0)(φ/ sin(φ)). Since φ/ sin(φ) > 1,
that time is always longer than that needed for a uniform
train (φ = 0) to travel the same distance. In other words,
all perturbations (except the in phase one) travel forward
slower that the train velocity V0. This means that per-
turbations are advected backwards in the reference frame
moving with velocity V0.

4 Scaling analysis

Once the instability threshold is reached, any perturba-
tion will amplify exponentially in the course of time, so

that nonlinear effects can no longer be disregarded. As dis-
cussed in Section 2, the set of growth equations is highly
nonlinear and nonlocal, so that only a “brute force” nu-
merical analysis would give a general answer. Our idea is
to inspect the original equations and try to reduce legiti-
mately the complexity. The key ingredient in our analysis
is the identification of a small parameter.

4.1 Scaling of space and time variables

When inspecting the dispersion relation (11) for an
in phase train, one realizes that the band of unstable
wavenumbers extends from q = 0 (actually this result is
traced back to translational invariance; it corresponds to
a global motion of the train) to a critical finite value qc
(to be defined below). We shall assume that q` remains
small in comparison to one, and we come back in the dis-
cussion below to the validity of this assumption. In that
case equation (11) takes a simpler form

<e[iω(q� 1, φ = 0)] =
ΩF`2

2
d− − d+

`+ d+ + d−
q2

−(DS`+DLa)Γq4, (14)

where terms proportional to F 2 have been neglected. We
have set here Φ = 0, which is the exploitation of the fact
that the in-phase mode is the most dangerous one. We
consider later the situation where small deviations from
the in-phase mode are taken into account. It is seen that
the range of wavenumbers with positive iω is given by

qc =
(

ΩF`2fs
2Γ (DS`+DLa)

)1/2

, (15)

where fs = (d− − d+)/(` + d+ + d−) is a parameter de-
scribing the Ehrlich-Schwoebel effect. The demand that
the small wavenumber expansion make a sense is satisfied
by requiring ε ≡ 2(qc`)2 � 1, and this is precisely the
definition of our small parameter

ε =
ΩFfs`

4

Γ (DS`+DLa)
· (16)

This guarantees the long wavelength regime. It is impor-
tant to see from the very beginning whether this limit
is realistic, or is it rather academic. Experimental data
are available on vicinal surfaces of Cu(1, 1, 17) which
have recently revealed a meandering instability during
step-flow growth [18]. Their data entering the expression
of ε which are best known are ΩF = 3 × 10−3 s−1,
` = 21.7 Å. The step stiffness can be written as γ̃ ≈
(kBT/2a) exp(Ek/kBT ), Ek being the kink energy. From
a simple “bond counting” argument, one can evaluate the
adatom equilibrium concentration on a vicinal surface:
Ωc0eq ∼ exp(−Ea/kBT ) with Ea = 3Ek. Using the re-
sult of references [15,16] from step fluctuations at equi-
librium, we have Ek = 0.13 eV. The diffusion constant
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on terraces takes the form D = a2ν0 exp(−ED/kBT ),
ν0 ∼ 1013 s−1 is an intrinsic frequency, and ED ≈
0.45 eV [19]. With a lattice constant of 2.55 Å, we find:
DS` = 1.4× 1015 exp(−0.84 eV/kBT ).

Using the Kubo formula [14], one can evaluate the
line diffusion constant: DL = a2/τL. From experimental
data [15,16]: DLa = aDL0 exp(−EL/kBT ), with aDL0 =
6.5×1018 Å

2
s−1 and EL = 0.89 eV. With these values, we

find that DS`/(DLa) ∼ 10−2 in the experimental temper-
ature range. This indicates that the stabilization of steps
essentially occurs via line diffusion in this situation. In the
one-sided limit (d+ = 0 and d− →∞), and around 300 K
we find ε ∼ 10−3, and λc = 2π/qc ∼ 103 atomic distances.
This result implies that a priori the long wavelength limit
is appropriate.

The active modes in the instability are those for which
q` ∼ qc` ∼ ε1/2, and therefore, lengthscales of interest are
those for which x ∼ `ε−1/2. The characteristic time of the
instability development is given by the growth rate of the
most unstable mode:

tm ∼
2π`4

Γ (DS`+DLa)
ε−2. (17)

This is obtained as tm ≡ 2π/<e[iω(q = qm, φ = 0)], qm
being the wavevector of the most unstable mode, related
to qc by qm = qc/

√
2. This relation provides the scaling of

the time variable t ∼ ε−2. Using the above data, we find
that the instability typically develops after a growth of a
thickness of the order of 100 monolayers.

Before proceeding further, it is instructive to analyze
briefly the asynchronous train. As pointed out in an earlier
work [6], the ES effect not only induces a morphological
instability of steps, but also leads to a “diffusive repulsion”
between steps on a vicinal surface. This dynamical repul-
sion will force steps to evolve in-phase. The time needed
for steps to organize in-phase in the unstable train is tφ,
defined as the synchronization time of the most unstable
mode with wavevector q = qm = qc/

√
2 (i.e. the one hav-

ing the maximum growth rate):

1
tφ
∼ ∂φφ<e [ω(q, φ)|q=qm,φ=0] . (18)

This time corresponds to the decay of a perturbation hav-
ing phase shifts of order one. From linear dispersion rela-
tion (Eq. (11)):

tφ
tm
∼ ε

(
(`+ d+ + d−)(DS`+DLa)

DS`(d− + d+ + `/2) +DLa(d− + d+)

)
, (19)

where tm is the typical time for the instability to develop
(Eq. (17)). In the one-sided limit, tφ/tm ∼ ε. Thus, we
expect the synchronization time to be shorter than the
instability time, i.e. tφ/tm � 1 since ε � 1. This means
that steps will be synchronized in the early stage of the
instability. This justifies consideration of small phases.

For a small but finite φ we have

<e[iω(q � 1, φ� 1)] = −ΩF
2

d− − d+

`+ d+ + d−

×
(

(q`)2 − d+ + d−
`+ d+ + d−

φ2

)
−
(

(DS`+DLa)q2 +
DS

`+ d+ + d−
φ2

)
Γq2. (20)

It is seen from the first term that for the phase shift to
be relevant we must have φ ∼ q` ∼ ε1/2. This implies
that the conjugate variable m (the step position along the
vicinality) has the following scaling m ∼ ε−1/2 (meaning
that one needs to travel a distance of that order to detect
phase modulations). In summary we have the following
scaling in Fourier space

q ∼ ε1/2, ω ∼ ε2, φ ∼ ε1/2, (21)

and their corresponding conjugate variables in real space

x ∼ ε−1/2, t ∼ ε−2, m ∼ ε−1/2. (22)

Beside the instability character, the problem involves
propagative effects which are related to the imaginary part
of iω. Inspection of the imaginary part of the dispersion
relation (13) in the long wavelength and small φ limit,
shows that =m(iω) ∼ ε3/2. This defines a fast timescale
τ ∼ ε−3/2 related to propagative effects –we mean faster
than the time scale associated with the instability ∼ ε−2.
Since we shall mainly be interested by a synchronized train
(in which case the imaginary part vanishes), we shall leave
out this additional complication for the moment, and post-
pone this question to a forthcoming work.

4.2 Scaling of the meander amplitude

In order to determine the nonlinear evolution equation,
following our previous work [4] in the presence of desorp-
tion, we could expand all physical quantities (concentra-
tion, step position) in power series of the small parameter,
the leading contribution would be of order ε0, followed (in
principle, and in a regular expansion) by ε1/2, since this
is the smallest power encountered above. This strategy
worked out when desorption is present, but not in the
present context. The reason is that the first contribution
in the step profile turned out to be ζ ∼ ε−1/2. This was
viewed as an ansatz in our previous work [6]. In this paper
we provide an explanation of that fact on the basis of gen-
eral considerations. Without having resort to an explicit
derivation we shall show why this scaling is inherently
linked with the non-desorption case.

For that purpose it is useful to identify two ‘classes’ of
adatoms (of course just in terms of a picture): Thermal
adatoms of concentration cT detach from a step, diffuse
on terraces and re-attach to a step. Mass transport
associated to their motion induces relaxation towards
equilibrium. Freshly landed adatoms of concentration
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cF have not yet been incorporated into a step. Their
attachment result in the non-equilibrium driving of the
steps. We can thus split the full set of equations (5–9)
into two pieces by writing the model equations in the
following equivalent form:

D∇2cT = 0, (23)
D∇2cF = −F. (24)

These fields obey the following boundary conditions at the
steps:

D∂ncT = ±ν±(cT − ceq), (25)
D∂ncF = ±ν±cF, (26)

where the index + and − refer to both sides of the steps.
They are coupled only through mass conservation at the
steps

Vn = vF + vT, (27)

where the driving contribution vF is proportional to the
incoming flux F :

vF = D[∂ncF+ − ∂ncF− ]. (28)

Indeed from the equations obeyed by cF (Eqs. (24, 26))
by making the transformation cF → cF/F one sees that F
scales out from the equations, implying thus that cF must
directly be proportional to F .

We can extract from cF the contribution of the uniform
train, which leads to a velocity given by ΩF`, plus another
contribution due to step modulations which must be com-
patible with conservation. vF is thus the sum of the mean
step velocity and the divergence of a flux j that describes
how mass is unequally distributed between different steps,
and different parts of each step:

vF = ΩF (`−∇j), (29)

with j, according to what is stated above, independent
of F .

The relaxational contribution vT is a thermal part and
is obviously independent of F :

vT = [D∂ncT]+− + a∂s[DL∂sΓκ]. (30)

Gradients of chemical potential µ are the driving force of
the relaxational contribution. Without loss of generality,
and as long as we deal with smooth and large scale per-
turbations, the thermal part of the normal velocity can be
written with help of the Cahn-Hilliard [20] equation:

vT = ∇[M∇µ], (31)

where M is the macroscopic mobility of the surface, and
µ = Ωγ̃κ is the chemical potential. The step index m
is omitted in this section to simplify notations. Thus we
shall from now on use the scalar mobility M along x. The
chemical potential is expressed as µ = ΩδF/δζ, where F
is the step free energy. Thus, if f(∂xζ) is the free energy
density, we have:

µ = − d
dx

[f ′(∂xζ)]. (32)

The evolution equation of the step meander (i.e. when the
step mean velocity is subtracted) now reads:

∂tζ = −∂x [ΩFj +M∂xxf
′] . (33)

Recall that F is proportional to ε (Eq. (16)), so that
we can set F = εF̄ , where F̄ is of order one. On the
other hand x = Xε−1/2 (Eq. (22)), so that ∂xx = ε∂XX .
j, M or f ′ only depend on derivatives of ζ, due to transla-
tional invariance. We write their argument symbolically as
{∂x} = {ε1/2∂X} (which is taken to mean any derivative
and any power). Equation (33) can be rewritten as:

∂tζ = −ε3/2∂X
[
ΩF̄j{ε1/2∂X}

+M{ε1/2∂X}∂XXf ′{ε1/2∂X}
]
. (34)

The central point lies in the fact that the small param-
eter ε appears as a common factor, in the first term it
stems from F while in the second one it originates from
the second spatial derivative.

In a regular expansion, close to the instability point
we expect that the amplitude of modulation is vanish-
ingly small when ε� 1. In reality, and this is the heart of
the proof, due to the structure of the above equation, it
will follow that no nonlinear term can enter the evolution
equation, even if the amplitude were allowed to be of or-
der one. There is even a stronger statement. Indeed even
if ζ = εϑH (H is of order one), with ϑ > −1/2, we show
below that any nonlinear term has a vanishing contribu-
tion. For that purpose we expand any function noted h
(which represents j....) in a Taylor series

h = h0 + h1ε
1/2+ϑ(∂XH)+h2ε

1+2ϑ(∂XH)2+h.o.t., (35)

where we have kept the smallest linear and nonlinear
terms. For example a term like εϑ+1∂XXH � εϑ+1/2∂XH.
Although our conclusion can be made at this stage, let us
be more explicit. Setting T = ε2t, equation (33) now reads:

εϑ+2∂TH = −εϑ+2∂X
[
j1∂XH + εϑ+1/2j2(∂XH)2

+
(
M0 + εϑ+1/2M1∂XH

)
×∂XX

(
f ′1∂XH+εϑ+1/2f ′2(∂XH)2

)]
+h.o.t.

(36)

Since ϑ > −1/2, we have εϑ+1/2 → 0 as ε→ 0. Therefore,
nonlinear terms are irrelevant in equation (36), and the
full equation reduces to a linear evolution equation:

∂TH = − (j1∂XXH +M0f
′
1∂XXXXH) . (37)

For nonlinearities to be relevant in equation (36), we need
εϑ+1/2 ∼ O(1), which is obtained when ϑ = −1/2. But
then, the expansion performed in equation (35) is a priori
not legitimate. Indeed, higher order terms become rele-
vant: (∂xζ)n ∼ εn(ϑ+1/2) ∼ O(1) when ϑ = −1/2 for any
integer n. We therefore expect a highly nonlinear evolution
equation, as will be shown explicitly in the next section.
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How concentration scales with ε can also be found
using the decomposition of the concentration. From
equations (24, 26), we have cF ∼ F ∼ ε. From equations
(7, 23, 25), we find that

cT − c0eq ∼ ceq − c0eq ∼ c0eqΓκ ∼ ε1/2. (38)

Thus, u = Ω
(
cF + cT − c0eq

)
∼ ε1/2, and the concentra-

tion will be written in the following form:

u(x, t) = ε1/2U(x, t), (39)

with U(x, t) ∼ O(1). Similarly, the meander will be writ-
ten as:

ζ(x, t) = ε−1/2H(x, t), (40)

where H(x, t) ∼ O(1).
It is important to show why in the presence of des-

orption the expansion is regular, leading to the KS equa-
tion [4]. With desorption the evolution equation can no
longer be written in the form of a conservation law (2).
Nevertheless, the above mentioned decomposition still
holds in a slightly different form: instead of being propor-
tional to F , the driving part is proportional to F − Feq,
where Feq is the incoming flux at equilibrium that coun-
terbalances ambient desorption (Feq = c0eq/τ , τ being the
characteristic residence time before desorption on a ter-
race). Hence, instead of equation (33), we have:

∂tζ = (Feq − F )g +N ∂xf
′, (41)

where g and N are functions of the derivatives of ζ. The
second term of the r.h.s. is now the one expected for non-
conserved relaxation to equilibrium: it is directly propor-
tional to the chemical potential variations ∆µ ∼ ∂xf

′

between the solid and vapour phases. (See model A in
Ref. [21], or [13]). Linearizing this equation, we have to
take g ≈ g̃∂xxζ since the first linear term proportional to
∂xζ is a propagative term, not contributing to stabiliza-
tion or destabilization (moreover, this term, not invariant
under the x → −x symmetry, is not allowed). We then
find:

∂tζ = [(Feq − F )g̃ +N0f
′
1] ∂xxζ. (42)

The prefactor of ∂xxζ is the effective stiffness of the step.
An instability is signaled by a negative sign of that pref-
actor. This happens when F > Fc = Feq + N0f

′
1/g̃. The

small parameter (that is the distance from the instability
threshold) is now ε′ ∼ F − Fc. Moreover it was found in
references [4,12] that x ∼ ε

′−1/2 and t ∼ ε
′−2. Defining

as in the conserved case X = ε
′1/2x and T = ε

′2t, and
ζ = ε

′ϑ′H, with X,T,H ∼ O(1), equation (41) is now
expanded for F ≈ Fc as:

ε
′ϑ′+2 ∂TH = −ε′ϑ′+2 g̃ ∂XXH

+ε
′2ϑ′+1 (F − Feq) (∂XH)2 g2

+ε
′2ϑ′+2

[
N0 f

′
2 ∂XX (∂XH)2

+N1 f
′
1 ∂XH ∂XXXH] + h.o.t. (43)

As before, we use ϑ′ > −1/2 so that expansion (35) makes
a sense. It is seen from this equation that the leading
nonlinear term is (F −Feq) ε

′2ϑ′+1 (∂XH)2. It counterbal-
ances the linear term ε

′ϑ′+2 g̃ ∂XXH provided that ϑ′ = 1.
The nonlinear term here, is that of the Kardar-Parisi-
Zhang [22] and Kuramoto-Sivashinsky [4,2] equations
(see Eqs. (1, 3)). It could not be present in the conserved
case because it cannot be written as the divergence of
a flux. Moreover, it is non-variational, and thus it must
vanish at equilibrium, as can be seen from its prefactor
F − Feq.

It must be emphasized that the decomposition into an
equilibrium and a nonequilibrium part holds in the present
problem, but is not a general property. This does not have
to be the case out of equilibrium in general (an example is
that of step flow or sublimation in the presence of electro-
migration, such a decomposition between relaxation and
driving parts is not possible).

5 One-sided synchronized steps

5.1 Multiscale analysis

In addition to synchronization, we first assume for sim-
plicity a one-sided limit (steps advance only thanks to
atoms from the terrace which is ahead), formally defined
as d+ = 0, and d− → +∞. In this limit equation (6) re-
duces to c+ = ceq (which is the Gibbs-Thomson condition)
and ∂c−/∂n = 0 (atoms do not descend the steps).

As we have shown in the last section the meander ζ ∼
ε−1/2, while the concentration field u ∼ ε1/2, we find it
convenient to set ζ = ε−1/2H and u = ε1/2U , with H and
U being quantities of order one. Under the assumption
that these quantities are analytic functions of ε1/2, we seek
solutions of the form:

U = U (0) + ε1/2U (1/2) + εU (1) + ε3/2U (3/2) + · · · ,(44)

H = H(0) + ε1/2H(1/2) + εH(1) + ε3/2H(3/2) + · · ·(45)

In order to make explicit the ε dependence, and to deal
with quantities of order 1, and according to (22), we set:

x = ε−1/2X, t = ε−2T. (46)

It is convenient to rescale space by ` and time by `2/D.
Performing the variable change: Z = z − ζm(x, t), mass
conservation (5) on terraces reads:

0 = ρ2 ∂ZZU + ε1/2 (η − 2∂XH ∂XZU

−∂XXH ∂ZU) + ε ∂XXU, (47)

where ρ = [1 + (∂XH)2]1/2, an η = ε D/ΩF`2. At the
steps, the Gibbs-Thomson relation at Z = 0, and a zero-
flux condition at Z = 1, takes the form:

U |Z=0 = −K, (48)

ρ2∂ZU |Z=1 = ε1/2 ∂XH ∂XU |Z=1 , (49)
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where K = Ωc0eq Γ ∂XXH/ρ
3.

Mass conservation at the step (Eq. (9)) yields

V + ε3/2∂TH =

ρ2∂ZU |Z=0 − ε1/2∂XH∂XU |Z=0 − ε3/2∂X
(
β

ρ
∂XK

)
,

(50)

where β = DLa/DS`. The strategy is now to solve
equations (47–50) in successively higher orders in ε.

5.1.1 Order 0

To this order, equation (47) reads:

∂ZZU
(0) = 0, (51)

which is solved by U (0) = A(0)Z+B(0). Equations (48, 49)
provide two conditions from which we get A(0) = 0 and
B(0) = −K(0). No contribution to step velocity is found
to 0th order. That is to say this order corresponds to the
equilibrium case.

5.1.2 Order 1/2

From (47) we find that U (1/2) obeys an inhomogeneous
equation on terraces:

ρ(0)2∂ZZU
(1/2) = −η, (52)

whose general solution takes the form:

U (1/2) =
−Z2

2ρ(0)2
η +A(1/2)Z +B(1/2). (53)

From boundary conditions at the steps (48, 49):

U (1/2) = B(1/2) = −K(1/2) (54)

ρ(0)2 ∂ZU
(1/2)|Z=1 = ∂XH

(0) ∂XB
(0). (55)

Integration constants are found to be:

A(1/2) = (η − ∂XH(0) ∂XK(0)) / ρ(0)2
, (56)

B(1/2) = −K(1/2). (57)

Mass conservation at the step (50) determines the mean
step velocity. Going back to physical variables, we find the
expected result: V = ΩF`.

5.1.3 Order 1

To this order, U (1) obeys:

∂ZZU
(1) =

1
ρ(0)2

[
∂XXH

(0)∂ZU
(1/2)+2∂XH(0)∂XZU

(1/2)

−2∂XH(0)∂XH
(1/2)∂ZZU

(1/2) − ∂XXU (0)
]

= a+ bZ, (58)

whose general solution takes the form:

U (1) =
b

6
Z3 +

a

2
Z2 +A(1)Z +B(1). (59)

Once again, integration factors A(1) and B(1) are found
from boundary conditions (48, 49):

U (1)|Z=0 = B(1) = −K(1), (60)

∂ZU
(1)|Z=1 =

b

2
+ a+A(1)

=
1

ρ(0)2

[
∂XH

(0) ∂XU
(1/2)

+∂XH(1/2) ∂XU
(0)

− 2 ∂XH(0) ∂XH
(1/2) ∂ZU

(1/2)
]
|Z=1.

(61)

Finally, mass conservation (50) leads to the sought after
evolution equation for H(0):

∂TH
(0) = ∂ZU

(1)ρ(0)2 − ∂XU (1/2)∂XH
(0)

−∂X
(

β

ρ(0)
∂XK(0)

)
. (62)

Upon substitution of the expressions of U (1) and U (1/2),
one realizes that terms containing H(1/2) cancel exactly in
this expression, leading to a closed form for the evolution
equation for H(0):

∂TH
(0)=− ∂X

[
η
∂XH

(0)

2 ρ(0)2 +
(

1 + βρ(0)
) ∂XK(0)

ρ(0)2

]
. (63)

Going back to physical variables, we obtain:

∂tζ=−∂x
[
ΩF`2

2
∂xζ

(1 + (∂xζ)2)

−
(
DS`+DLa(1 + (∂xζ)2)1/2

) ∂x(Γκ)
(1+(∂xζ)2)

]
. (64)

Besides the term proportional to DL (line diffusion con-
stant), this is the equation derived in reference [6] on which
we have given a brief account.

Introducing the step macroscopic mobilityM, and the
chemical potential µ = kBTΓκ, the evolution equation can
be rewritten in a more compact and enlightening form:

∂tζ = −∂x
[
ΩF`2⊥

2
∂xζ −M∂sµ

]
, (65)

where s is the arclength along the steps, and `⊥ = `/[1 +
(∂xζ)2]1/2 is the distance between two neighboring steps
measured along their normal (see Fig. 2 for geometrical
definitions). The effective step mobility reads:

M =
DS`⊥ +DLa

kBT
· (66)



F. Gillet et al.: Non-linear evolution of step meander during growth of a vicinal surface with no desorption 527

ζm+1

ζm

z

x

n
l

l

s

n

+

θ

Fig. 2. Some definitions of the notations used in the text.

The expected decomposition of step velocity (see Sect. 4.2)
is clearly seen here. The first term on the r.h.s. of
equation (65) is the driving part. To this term a simple ge-
ometrical meaning can be assigned (see Appendix A). The
second term is the relaxation part with a mobility depend-
ing on the local step orientation. Note that the present
mobility M and the one introduced in Section 4.2, noted
M , differ by the scale factor [1 + (∂xζ)2]1/2 which relates
the arc-length s to the Cartesian coordinate x.

5.2 Numerical solution

In reference [6], numerical solution of equation (64)
(without line diffusion) was performed using a simple Eu-
ler scheme, and it was found that: (i) A cellular struc-
ture takes place, the wavelength of which (the most un-
stable one) is fixed at the initial stage of the instability and
no coarsening is seen. (ii) The amplitude grows like t1/2.
(iii) The shape of the cells is similar to the inverse error
function, that is to say it develops a spike-like morphol-
ogy. (iv) The meander is symmetric with respect to the
transformation ζ → −ζ. It has been realized meanwhile
that, though all these qualitative features were correct,
the spikes are the result of a numerical deficiency in the
original code. In order to cure this problem we have to re-
sort to a special numerical treatment. Different successful
attempts have been made but we shall here describe only
the most robust numerical treatment.

We use a powerful geometrical representation of the
meander [23,24], in terms of the arclength s and the angle
θ, oriented counterclockwise, between the normal and a
given fixed direction (the z-axis direction) (see Fig. 2).
θ is related to ζ via: tan(θ) = −∂xζ and the curvature
simply reads: κ = ∂sθ. Simple differential geometry [24]
provides us with the evolution equation for θ, as a function
of tangential and normal velocities, vt and vn:

∂θ

∂t
= vtκ−

∂vn

∂s
· (67)

Physics is invariant under a change of definition of the
arclength s. This allows an arbitrary time-dependent re-
parameterization of the curve. This “gauge” can be seen

as an additional tangential velocity [23,24], with no phys-
ical relevance. A particular choice that is convenient here
is the one that keeps the relative arclength s/L constant
in the course of time, where L is the total length of the
curve. This will ensure that the discretization points re-
main equally spaced along the curve. The tangential ve-
locity reads [23,24]:

vt =
s

L

∫ L

0

κvnds′ −
∫ s

0

κvnds′. (68)

The evolution equation of the meander (64) allows one to
write the step normal velocity:

vn = −∂s
[
cos(θ) sin(θ) +

(
β + cos(θ)
β + 1

)
∂sκ

]
, (69)

where time t is rescaled by 4`4/ε2Γ (lDS + aDL) and spa-
tial variables x, ζ, by

√
2`/
√
ε, so that only one parameter

survives: β = DLa/DS`.
Derivatives along the arclength s are evaluated using a

centered finite difference method. We use a backward dif-
ferentiation scheme with variable step for time integration.
This “solver” enjoys rather good precision and L-stability
(that is to say it is unconditionally stable and optimally
attenuates high-frequency (i.e. noise) components of the
solution) that makes it well fitted to our specific problem.

Our present simulations show qualitatively similar be-
havior as that found in reference [6] (see Fig. 6). A ma-
jor difference is revealed however: instead of spikes, the
cellular structure exhibits a plateau in the extrema re-
gions [25], as shown in Figure 3. (Here we define a plateau
as a region of finite slope, as opposed to regions where the
slope diverges with time. Hence, to some scale, plateaus
are curved, and this curvature does not tend to zero). The
width of a “plateau” reaches a constant value after a tran-
sient regime.

5.3 Analytical study

We show here that the above numerical results can be ac-
counted for using simple analytical arguments. We give
here only the main results, whereas details are relegated
into Appendix B. The central assumption is a decomposi-
tion in two types of regions, where two different ansatz are
used. In the large slope regions, a multiplicative variable
separation is used:

ζs(x, t) = A(t)g(x), (70)

while an additive variable separation is performed for the
plateau regions:

ζp(x, t) = B(t) + h(x). (71)

An additional constraint coming from mass conservation
allows to determine quantitatively the asymptotic behav-
ior by matching these two solutions. The amplitude of the
meander is found to behave as:

ζmax − ζmin = 2a0t
1/2, (72)
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Fig. 3. Numerical solution of equation (64). Meander over one period. Cells are symmetric and develop plateaus. Their amplitude
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Fig. 4. One sided case: The prediction for the normalized
plateau size I(β̃) (solid line) is compared with numerical so-
lution of equation (64) (symbols), which corresponds to the
one-sided limit.

where a0 is calculated in Appendix B. The rescaled me-
ander ζ(x, t)/t1/2 converges to a well defined profile, and
looks as if plateaus were formed in the extrema regions.
The width of a plateau is defined as λ0/2. We find:

λ0 = λcI(β̃), (73)

where β̃ = DS`/(DS` + DLa), λc = 2π/qc is the largest
stable wavelength from linear analysis, and I is a function
given in Appendix B. Since I(β̃) decreases monotonously
from I(0) = 1 to I(1) ≈ 0.54, the plateau size increases
as line diffusion is increased, and is always smaller than
λc/2. Good quantitative agreement between the numerical
solution of equation (64) and these analytical predictions
is found (see Fig. 4).

6 Front-back symmetry breaking

The expansion performed in Section 5.1 can be pushed
to next order following the same strategy. We shall
here merely give the result and details can be found in
reference [26]. Instead of a closed equation for H(0), here
two coupled dynamical equations for H(0) and H(1/2)

are obtained. Going back to the physical quantity ζ =
ε−1/2(H(0) + ε1/2H(1/2)), the coupled equations can be
recast into a single equation for ζ:

∂tζ = − ∂

∂x

[
Ω F `2⊥

2
∂xζ

(
1− κ `

3

(
`

`⊥
+

2 `⊥
`

))
−M(1/2)∂µ

∂s

]
, (74)

where the macroscopic mobility of the step reads:

M(1/2) =
DS`⊥ +DLa

kBT
− DS`

2κ

2kBT
· (75)

Hence, to this order, correction to equation (64) are pro-
portional to step curvature.

As before, a geometrical formulation with rescaled
time and space variables, is used. We now have two pa-
rameters β and ε in the normal velocity:

vn = −∂s
[
cos(θ) sin(θ) +

(
β + cos(θ)
β + 1

)
∂sκ

−
√
ε κ

(
2
3

(cos(2θ) + 2) sin(θ) + ∂sκ

)]
. (76)

The same qualitative features as for equation (64) are
observed: the wavelength is fixed at early stages by the
one corresponding to the fastest growing mode, and the
step roughness increases with time as t1/2 (see Fig. 6).
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Fig. 6. One sided case: The roughness of the meander obeys
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The interesting fact is the symmetry of the shape: the
cells do not enjoy the up-down symmetry, ζ → −ζ (see
Fig. 5). Clearly, equation (64) is invariant under the up-
down symmetry ζ → −ζ. The symmetry breaking origi-
nates from the new terms as can be seen by performing
the transformation ζ → −ζ in equation (74). As shown
in Appendix B, these terms affect the relative sizes of the
back and front plateaus, but the t1/2 scaling law for the
roughness amplitude seems to persist as a robust feature.

The results obtained in this section are in complete
agreement with full simulations based on a solid-on-solid
model in reference [6]. Hence we have succeeded in ex-
tracting the relevant dynamics of step meander by means
of the multiscale analysis.

7 Two-sided steps in phase

In the two-sided regime (i.e. d+ and d− finite), a similar
multi-scale analysis can be performed for in-phase steps.
We find:

∂tζ = ∂x

[
−ΩF

2
∂xζ

`2⊥(d− − d+)
d+ + d− + `⊥

+
1

(1 + (∂xζ)2)1/2

(
DLa+DS

`2 + `⊥(d+ + d−)
d+ + d− + `⊥

)
∂x(Γκ)

]
.

(77)

Although this equation looks more complicated, the me-
ander evolution is qualitatively similar to that found in
the one-sided case (which is recovered by taking the limit
d− → ∞ in Eq. (77)). Indeed, plateau formation and
power law behavior of the roughness (with the same ex-
ponent ∼ t1/2) are also found in the two-sided case.

More details on step behavior, such as the plateau
size, can be gained from the analytical investigation of
equation (77), as shown in Appendix B. In the pure line
diffusion regime DLa� DS`, we have:

λ0 = λcI(δ̃), (78)

where λ0/2 is the plateau size, δ̃ = `/(`+ d+ + d−), and
I is the same function as in equation (73). In the pure
terrace diffusion case DLa� DS`, we find:

λ0 = λcI(1− δ̃). (79)

These result are in good agreement with numerical solu-
tion of equation (77) (see Fig. 7).

8 Discussion and summary

Starting from the BCF model, we have extracted a non-
linear evolution equation for the step meander. This equa-
tion is highly nonlinear, and thus, could not be expected
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from traditional phenomenological approaches, where lin-
ear terms are simply supplemented with an additive non-
linear term, as in the case of KS or KPZ equations.

The numerical solution of this equation exhibits no
lateral coarsening. This feature can probably be traced
back to the absence of spatially periodic solutions for λ >
λc = 2π/qc (qc is defined by Eq. (15)), as pointed out in
reference [6].

A central result of the present study is that the late
time power law behavior of the amplitude of the meander
w ∼ t1/2 is a robust feature, regardless of the details of the
evolution equation (one-sided, two-sided, line diffusion...).
The limit of validity of the multi-scale analysis may be
called into question since the amplitude of the meander
diverges with time. On one hand we have checked that
higher order terms do not affect dynamics, on the other
hand, and most importantly is that the lattice gas simula-
tion briefly presented in [6] reveals the same feature. It is
thus appealing to speculate that the features found here
are intimate to the full BCF model and that the mul-
tiscale result recovers the essential behaviour. A second
interesting point which is worth of mention is that higher
order terms destroy the up-down symmetry, but the power
law w ∼ t1/2 remains unaffected. The same conclusion fol-
lows from full lattice gas simulations as briefly reported in
reference [6]. A natural question arises: could the ampli-
tude temporal increase continue to evolve without bound
in all circumstances until the surface breaks up into a
lamellar-like pattern, or is there a physical mechanism, not
accounted for here, leading to saturation of the amplitude?
Experimental observation of this instability [18] seems to
show such a saturation for the case of Cu(1, 1, 17), while
experiments [27] on Si(001) does not reveal a hint towards
a saturation. Possible candidates for amplitude satura-
tions are (i) strong anisotropy, (ii) elastic step interactions.
We hope to report along these lines in the near future.

Another important line of investigation would be to
study steps that are not in phase in order to probe the
robustness of our results. Solving the full two-dimensional
dynamics would allow to determine whether step bunch-
ing, or secondary instabilities may occur. At present we
do not see any hint about what ingredient would lead to
step bunching in the present model. Still the study of a
incoherent train will be performed in the future in order
to have a more complete picture.

Another simplification was that we impose no over-
hang to occur. Including overhangs is in principle feasible
by resorting to an intrinsic representation of the steps (i.e.
in terms of the angle between the normal vector and the
growth direction). This question will be addressed in the
future.

It is worth pointing out that the use of equilibrium for-
mula to evaluate the stabilizing line diffusion effect could
be criticized, since densities of kinks and of mobile atoms
along steps depend on growth conditions [28]. With re-
gards to line mobility, our analysis allows extraction of
the geometry dependence of the mobility for large me-
ander amplitude. This treatment should serve as a basis
for the nonlinear study of relaxation towards equilibrium
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Fig. 7. In solid line is plotted the normalized plateau size
I(β̃). Symbols represent numerical results: (5) refers to the
pure terrace diffusion case, and (?) to pure line diffusion.

(i.e. thermal smoothening) of large perturbations on vic-
inal surfaces [29].

Perhaps one of the most striking result is the mani-
festation of rather “stringent” plateaus, which are likely
linked to the non-standard character of the evolution
equation. It is interesting to note that the plateaus are
a feature of a continuum theory, a finding which is to be
compared to a long standing problem in the context of
ES-induced mound formation [30]. In all previous stud-
ies, mound plateaus were indeed considered as a signature
of the breakdown of continuum theories. We have shown
here, in contrast, that a single equation in the continuum
limit can produce such plateaus, without having resort
to specific ingredients in the angular region. It is not yet
clear what kind of equation in the continuum limit would
describe these dynamics for mound formation. Is it simi-
lar or not to the one encountered here? These questions
constitute an important line for future inquiries.

Appendix A: Geometrical origin
of the destabilizing term

In equation (64), the relaxation term is interpreted as a
Cahn-Hilliard contribution. We present here a derivation
of the destabilizing term from geometrical considerations
in the one-sided limit.

Let us consider a curved part of the step as shown
in Figure 8. In the one-sided model, step motion results
from incorporation of adatoms from the terrace ahead of
it. Mass conservation for an element of terrace surface∆S,
hatched in Figure 8, reads:

v∆x = ΩF∆S + j⊥(x) − j⊥(x+∆x) (A.1)

where v is the step velocity along the z-axis, and ∆x the
extent of the step element CC′ along the x-axis. The num-
ber of atoms entering the step is vn∆s = v∆x. j⊥(x) is
the total flux across the BC segment in Figure 8. ∆S is
written as:

∆S ≈ `∆x−A(x) +A(x+∆x), (A.2)
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Fig. 8. The element of terrace area ∆S that feeds one element
of step, is hatched. Its area (approximated by that of BB′C′C)
is the sum of `∆x, the area of AA′C′C, minus A(x) is the area
of the triangle ABC, plus A(x+∆x) the area of A′B′C′.

where A(x), the area of the triangle ABC in Figure 8, is
a function of ∂xζ:

A(x) =
`2

2
cos(θ) sin(θ) =

`2

2
∂xζ

1 + (∂xζ)2
, (A.3)

where θ is the angle between the z-axis and the normal
to the step. In the long wavelength limit, the local ge-
ometry of the terrace is completely described by `⊥, the
length of BC in Figure 8, κ, the step curvature, and their
derivatives with respect to the arclength s along the steps.
Since the flux j⊥ can only come from a variation of the
local geometry along s, we have, at most

j⊥ ∼ ∂s`⊥ ∼ ∂xxζ � A ∼ ∂xζ , (A.4)

which shows that terms containing j⊥ can be neglected
to leading order in equation (A.1). Combining equations
(A.1, A.2, A.3), and letting ∆x going to zero, we find:

v = ΩF`− ∂x
(
ΩF`2

2
∂xζ

1 + (∂xζ)2

)
. (A.5)

Once the mean step velocity V = ΩF` is subtracted, we
recover the first term of equation (64).

Appendix B: Late time behavior

In this appendix we derive analytically the main results
obtained numerically. Despite the highly nonlinear char-
acter of the evolution equation, we show here that some
simple ansatz allows to describe the asymptotic regime
with good accuracy.

B.1 Large slope regions and extrema regions

We found the conserved evolution equation of the step
meander:

∂tζ = −∂xj[ζ], (B.1)

with the mass flux (see Eq. (77)):

j[ζ] =
1

(1 + (∂xζ)2)1/2

[
α∂xζ

δ + (1 + (∂xζ)2)1/2

+
(
DLa+DS`

1 + δ(1 + (∂xζ)2)1/2

δ + (1 + (∂xζ)2)1/2

)
× ∂xx

(
Γ∂xζ

(1 + (∂xζ)2)1/2

)]
, (B.2)

where δ = l/(d+ + d−), and α = ΩF`2(d− − d+)/2(d+ +
d−). For the large slope region we make use of the variable
separation:

ζs(x, t) = A(t) g(x), (B.3)

where A� 1, and ∂xg 6= 0 for any value of x. Substituting
in equation (B.2), one finds that the destabilizing term
(proportional to α) dominates and:

AA′ = α
g′′

gg′2
= C, (B.4)

where C is a constant, and the prime stands for the deriva-
tive. The late time solution of these equations reads:

A = (2Ct)1/2 (B.5)

g = (2α/C)1/2erf−1(4x/λs) . (B.6)

λs being a constant, and erf(x) the error function. Insert-
ing these expressions in equation (B.3), we find that the
meander does not depend on C:

ζs(x, t) = 2(αt)1/2erf−1(4x/λs). (B.7)

This solution describes regions of large slopes, but is not
expected to accurately describe the shape around the ex-
trema of ζ where the slope ∂xζ approaches zero. In those
regions of width λ0/2 and of meander amplitude of the
order of h0 (see Fig. 9), global mass conservation implies:

2j0 =
λ0

2
∂th0, (B.8)

where j0 is the mass flux coming from the large slope
regions. From equation (B.2), we have:

j0 ≈
α

∂xζs(x0, t)
, (B.9)

where x0 = (λm − λ0)/4 is the abscissa of the crossover
point between high slope and extrema regions, and the
period of the meander λm is that of the most unstable
mode obtained from linear analysis. Using h0 = ζs(x0, t)
and equation (B.7):

λ0

4
=
λm
4
− λs

4
erf
[

h0

2(αt)1/2

]
, (B.10)

so that equation (B.8) now reads:

1
t1/2

α1/2λs
4
√
π

exp

[
−
(

h0

2(αt)1/2

)2
]

=

∂th0

[
λm
4
− λs

4
erf
[

h0

2(αt)1/2

]]
· (B.11)
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Fig. 9. Asymptotic meander morphology. λm is the period of
the meander and is also the most unstable wavelength obtained
from linear stability analysis. h0 is the amplitude of the me-
ander and λ0/2 is the width of a plateau. In the large slope
regions (of width λs/2), the meander can be fitted by an erf
like function (see Eq. (B.7)). j0 is the mass flux coming from
these large slope regions toward the plateaus.

This equation has the trivial solution: h0 = a0t
1/2. Using

this solution and equation (B.10), λ0 is seen not to de-
pend on time. In the extrema region, we therefore look for
solutions of the form:

ζp(x, t) = B±(t) + h(x), (B.12)

with B±(t) = ±a0t
1/2, where the plus and minus signs

refer to the maxima and the minima regions respectively.
Upon substitution in the evolution equation (B.2), we find
that the problem amounts to finding the stationary solu-
tions ∂xj[h(x)] = 0. Looking for solutions with left-right
symmetry x→ −x we finally have to solve

j[h(x)] = 0. (B.13)

This will be exploited in the next section.
The parameters λs, λ0 and a0 are not independent.

Using equations (B.8, B.10), we have two relations, so that
λs and a0 can be determined as a function of λ0. From
equation (B.11), we get an implicit equation for a0:

λm
λ0
− 1=

√
π
( a0

2α1/2

)
exp
[( a0

2α1/2

)2
]

erf
[ a0

2α1/2

]
.

(B.14)

The expression for λs is:

λs = λ0

√
π
( a0

2α1/2

)
exp

[( a0

2α1/2

)2
]
. (B.15)

Hence, the asymptotic behavior of the meander (defined
by Eq. (B.7) for high slopes and Eq. (B.12) for small ones)
only depends on the size of the extrema region λ0/2 (since
the two parameters a0 and λs are linked to λ0). How the
plateau size is related to the model parameters will be
considered in the next section.

0.5 0.6 0.7 0.8 0.9 1
x0/λm

0.6

0.8

1

1.2

1.4

1.6

β ~ = 0
β ~ = 0.25
β ~ = 0.5
β ~ = 0.75
β ~ = 1

a0/α
1/2

λs/λm

Fig. 10. The solid line represents the prediction for the ampli-
tude a0 as a function of x0/λm. The dashed curve is the predic-
tion of the dimensionless ratio λs/λm. Symbols represent data
from numerical solution of equation (64) (the one-sided case),
as β̃ is varied.

B.2 Plateau size

In the one-sided limit we have δ = 0, and equation (B.13)
yields (in view of Eq. (B.2)):

0=α
h′

1 + h′2
+
(
DS`Γ

1 + h′2
+

DLaΓ

(1 + h′2)1/2

)
∂xx

(
h′

(1 + h′2)1/2

)
.

(B.16)

Introducing the abbreviation:

m =
h′

(1 + h′2)1/2
, (B.17)

we can rewrite it in a familiar form:(
(DS`+DLa)Γ

α

)
m′′ = − m

β̃(1−m2)1/2 + (1− β̃)

= − dU
dm

, (B.18)

analogous to that describing the motion of a particle of
position m as a function of time x in a potential U . We
have defined β̃ = DS`/(DS`+DLa), and:

U(m) =
∫ m

0

mdm
β̃(1−m2)1/2 + (1− β̃)

· (B.19)

Multiplying equation (B.18) by m′ and integrating
with respect to x, we get the analogue of the “energy
conservation” condition:

1
2

(
(DS`+DLa)Γ

α

)
m
′2 + U(m) = U(m0), (B.20)
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where m0 is the turning point (i.e. m′ = 0 when m = m0).
We look for solutions having two “vertical” tangents where
the step slope diverges: ∂xζ → ±∞, (i.e. m0 → ±1) in
order to match the extrema solution with the large slope
region. The size of the extrema region reads:

λ0

2
=
∫ λ0/2

0

dx =
∫ m0

−m0

dm
m′

, (B.21)

where m0 → 1. Using equation (B.20), we find:

λ0

λm
=
I(β̃)√

2
, (B.22)

where

λm = 2π
(

2
(DS`+DLa)Γ

α

)1/2

(B.23)

is the the wavelength of the most unstable mode obtained
from linear analysis, and

I(β̃) =
1

π
√

2

∫ 1

−1

dm
[U(1)− U(m)]1/2

(B.24)

is plotted in Figure 4. I(β̃) is a decreasing function with
I(0) = 1 and I(1) ≈ 0.54. Hence the extrema region size
is finite and always smaller than λc = λm/

√
2.

The meander variation in this region, as compared to
the total amplitude of the meander, decreases as t−1/2,
and the step looks as if plateaus were present.

The reader is invited to repeat the calculation in the
two-sided case –where δ is finite, in presence of pure line
(β̃ = 0) or terrace diffusion (β̃ = 1). Surprisingly, the same
integral I appears. Let us define δ̃ = `/(`+ d+ + d−). We
find in the pure line diffusion case:

λ0

λm
=
I(δ̃)√

2
, (B.25)

and in the pure terrace diffusion case:

λ0

λm
=
I(1− δ̃)√

2
· (B.26)

Hence, λ never exceeds λm/
√

2 = λc the largest wave-
length for which the meander is linearly stable.

We can use a similar treatment to analyze the case
with higher order terms (Eq. (74)). The main point is that
terms proportional to ε1/2 do not affect the long time be-
havior obtained from the ansatz (B.3). Consequently, in
large slope regions, we expect once again ζ ∼ t1/2. Terms
breaking the front-back symmetry will affect differently
maxima and minima regions, as seen in Figure 5, because
the effective potential U(m) is not invariant under the
m → −m transformation anymore, which corresponds to
the up-down z → −z for step meander. We shall not de-
velop here further this point; for more details see [26].

The numerical solution of equation (B.1) is performed
in order to check the validity of the analytical results.

First, the qualitative profile of the meander is in good
agreement with the above description. We found the pre-
dicted scaling of the amplitude of the meander ∼ t1/2 in
all simulations performed so far, except in the case of very
small kinetic lengths (d+ + d−)/l < 10−2, where we were
not able to explore the late time behavior, due to bad
numerical convergence.

As shown in Figures 4 and 7, the observed plateau
size, is in very good agreement with the prediction of
equations (B.22, B.26, B.25).

The value of a0 is extracted from the evolution of the
meander amplitude via the relation:

ζp,max − ζp,min ≈ 2a0t
1/2. (B.27)

λs is calculated from a fit of ∂xζ at ζ = 0:

∂xζs|ζ=0 =
4
√
π

λs
(αt)1/2. (B.28)

In Figure 10, both numerical values are compared to the
predictions of equations (B.14) and (B.15) in the one-sided
limit, where λ0 is calculated from equation (B.22). Once
again, good agreement is found.
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